A potential gravity-sensing role of vascular smooth muscle cell glycocalyx in altered gravitational stimulation.

نویسندگان

  • Hongyan Kang
  • Meili Liu
  • Yubo Fan
  • Xiaoyan Deng
چکیده

Previously, we have shown that vascular smooth muscle cells (VSMCs) exhibit varied physiological responses when exposed to altered gravitational conditions. In the present study, we focused on elucidating whether the cell surface glycocalyx could be a potential gravity sensor. For this purpose, a roller culture apparatus was used with the intent to provide altered gravitational conditions to cultured rat aortic smooth muscle cells (RASMCs). Heparinase III (Hep.III) was applied to degrade cell surface heparan sulfate proteoglycans (HSPG) selectively. Sodium chlorate was used to suppress new synthesis of HSPG. Glycocalyx remodeling, nitric oxide synthase (NOS) activation, and F-actin expression induced by gravity alteration were assessed by flow cytometry, reverse transcription polymerase chain reaction (RT-PCR), and Western blot. Results indicate that the exposure of cultured RASMCs to altered gravitational conditions led to a reduction in cell surface HSPG content and the activation of NOS. It also down-regulated the expression of glypican-1, constitutive NOS (NOSI and NOSIII), and F-actin. On the other hand, Hep.III followed by sodium chlorate treatment of HSPG attenuated the aforementioned NOS and F-actin modulation under altered gravitational conditions. All these findings suggest that the glycocalyx, and HSPG in particular, may be an important sensor of gravitational changes. This may play an important role in the regulation of NOS activation, F-actin modulation, and HSPG remodeling in VSMCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

Lectin-Based Characterization of Vascular Cell Microparticle Glycocalyx

Microparticles (MPs) are released constitutively and from activated cells. MPs play significant roles in vascular homeostasis, injury, and as biomarkers. The unique glycocalyx on the membrane of cells has frequently been exploited to identify specific cell types, however the glycocalyx of the MPs has yet to be defined. Thus, we sought to determine whether MPs, released both constitutively and d...

متن کامل

Inflammation and Vascular Calcification Causing Effects of Oxidized HDL are Attenuated by Adiponectin in Human Vascular Smooth Muscle Cells

The role of oxidized high-density lipoprotein (oxHDL) and the protective effects of adiponectin in terms of vascular calcification is not well established. This study was conducted to investigate the effects of oxHDL with regards to inflammation and vascular calcification and to determine the protective role of adiponectin in attenuating the detrimental effects of oxHDL. Cell viability, mineral...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

Endothelial glycocalyx dimensions are reduced in growing collateral arteries and modulate leucocyte adhesion in arteriogenesis

UNLABELLED During collateral artery growth, monocytes adhere to the endothelium and secrete cytokines from the perivascular space promoting arteriogenesis. Recently, the endothelial glycocalyx has been shown to modulate leucocyte infiltration in atherogenic regions. The role of this endothelial surface coating in arteriogenesis, however, has not been investigated so far. We now report that loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Astrobiology

دوره 13 7  شماره 

صفحات  -

تاریخ انتشار 2013